Skip to main content

Math 01

· One min read

Show that the sum of the infinite series

log2elog4e+log16e+(1)nlog22ne+\log_{2}\mathrm{e}-\log_{4}\mathrm{e}+\log_{16}\mathrm{e}-\ldots+(-1)^{n}\log_{2^{2^{n}}}\mathrm{e}+\ldots

is

1ln(22)\frac{1}{\ln(2\sqrt{2})}

[ logab=c\log_{a}b=c is equivalent to ac=ba^{c}=b ]

STEP I 1987 Question 4 (Pure)

Solution

click
log2elog4e+log16e+(1)nlog22ne+=k=1(1)klog22ke\log_{2}\mathrm{e}-\log_{4}\mathrm{e}+\log_{16}\mathrm{e}-\ldots+(-1)^{n}\log_{2^{2^{n}}}\mathrm{e}+\ldots = \sum_{k=1}^{\infty} (-1)^{k}\log_{2^{2^{k}}}\mathrm{e}
=k=1(1)k2kln2= \sum_{k=1}^{\infty} \frac{(-1)^{k}}{{2^{k}}\ln{2}}
=1ln2k=1(1)k2k=1ln2k=1(12)k= \frac{1}{\ln{2}}\sum_{k=1}^{\infty} \frac{(-1)^{k}}{2^{k}} = \frac{1}{\ln{2}}\sum_{k=1}^{\infty} {(-\frac{1}{2})}^{k}
=1ln211(12)=132ln2= \frac{1}{\ln{2}} \cdot \frac{1}{1 - (-\cfrac{1}{2})} = \frac{1}{\cfrac{3}{2} \cdot \ln{2}}
=1ln(22)= \frac{1}{\ln(2\sqrt{2})}